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Abstract

The increasing amount of sensitive user data that is being
generated can provide value in creating sophisticated infer-
ences about people and their surroundings. Although aggre-
gation statistics can be extremely useful, users do not trust
any single third-party aggregator to see their data in plain-
text. We contribute a practical system for privacy preserving
queries using hardware enclaves. Our design provides trust
in an untrusted online service provider infrastructure, flex-
ible aggregate queries, maintenance of differential privacy,
and does not require user clients to be online for query com-
putations. We designed a proof-of-concept implementation
and analyzed the scalability of query latencies with increas-
ing numbers of users. With individual privacy preserved, we
hope users with sensitive data will be much more willing to
participate in statistical databases that have widely applied
benefits.

1 Introduction

The increasing ubiquity of smart phones are equipped with a
rich set of embedded sensors such as microphones, cameras,
accelerometers, gyroscope, and GPS. Such sensors enable
the collection of streams of time-series data. The data gener-
ated by these sensors provides opportunities to make sophis-
ticated inferences about not only people (e.g. human activ-
ity, health, location, social event) but also their surroundings
(e.g. pollution, noise, weather, oxygen level), and thus can
help improve peoples health as well as lives. This technology
and individual participation help drive domains such as en-
vironmental monitoring, traffic monitoring, and health care.

Although aggregation statistics computed from time-
series data can be extremely useful, the data from individual
users are often privacy-sensitive, and users do not trust any
single third-party aggregator to see their data in plaintext.
Projects such as E-mission, a research project at the Univer-
sity of California, Berkeley that aggregates crowd-sourced
activity and behavior data to enable personal and structural

shifts to sustainable transportation, collects sensitive location
data and would greatly benefit from differentially private se-
cure aggregation. To encourage user participation in aggre-
gated queries, it is important to address such privacy con-
cerns by considering how an untrusted data aggregator can
learn desired statistics over multiple participants data with-
out compromising each individual’s privacy. While existing
literature provides solutions for differentially private aggre-
gation for mobile sensing data, they fail to achieve a solution
that ensures a secure threat model that supports a flexible set
of queries, is scalable with a large number of users, and does
not require any user involvement.

In this project, we present a method for privacy preserv-
ing and differentially private queries in a practical systems
setting. We use propagating remote attestation of hardware
enclaves to ensure trust and privacy across untrusted infras-
tructure. Each user has their own enclave which acts as their
attestable proxy in the cloud; the user enclaves communicate
with an aggregate enclave who they attest. Hence, the propa-
gating or chaining of attestation. The aggregate enclave per-
forms the final aggregation computation of intermediate val-
ues computed by user enclaves. Our model provides for a
separation of clients (data sources) and query computations;
users are only required to contact the system when they up-
load data. This paper serves as a comprehensive description
of our project, detailing the context and motivation, related
work, design, and a proof-of-concept implementation.

To test the scalability and practicality of this system, we
created a Python implementation of the aggregate query
computation component of our proposed system. The
enclaves are implemented as Docker containers that run
SCONE (Secure Linux Containers on Intel SGX) [1]. A
simple sum query experiment was run in order to observe
the effect of using hardware enclaves on overall query laten-
cies. We notice that there is considerable overhead for using
SGX (about 3.12 seconds) and the total query latency for 50
users is high when using SGX secure hardware. Thus, future
work hopes to tackle the potential scalability limitations by
exploring partitioning user enclaves onto different machines.



2 Background

The goal of our system is to be able to produce privacy-
preserving queries that additionally ensure individual pri-
vacy. Privacy-preserving queries ensure that the querier can
learn only the final query result and not any intermediate re-
sults. A stronger notion of privacy-preserving queries is dif-
ferential privacy.

2.1 Differential Privacy
2.1.1 Definition & Overview

The concept of differential privacy was first introduced by C.
Dwork [5] and ensures that an individual is not at increased
risk of privacy when they participate in a statistical database
and their associated queries. Essentially, a differentially pri-
vate query result should be approximately the same whether
any participant is included or excluded from the query. The
traditional setting involves a trusted aggregator adding statis-
tical noise to the query result before releasing it to the data
analyst. Our approach uses the same strategy, but we rely on
attestable enclaves to add the noise to the query result.

In this paper we consider ε-differential privacy. Let ε de-
note a positive real number and A denote a randomized al-
gorithm that takes a dataset representing the actions that can
alter the data as input. The algorithm A is said to provide
ε-differential privacy if, for all datasets D1 and D2 that differ
on a single element and for all subsets S of Range(A):

Pr[A(D1) ∈ S]≤ eε Pr[A(D2) ∈ S]

where the probability is taken over the randomness used
by the algorithm A.

Adding statistical noise to each query result is not suffi-
cient in ensuring differential privacy if a querier repeats a
query and averages the results as this will lead to a more pre-
cise query answer. To mitigate this, privacy budgets, the ε in
the definition above, represents the maximum privacy loss.
We can think of each query as a privacy expense which in-
curs an incremental privacy loss and once the privacy budget
is depleted, access to that data is blocked. Privacy budget
can be replenished if new data is added.

2.1.2 Query Noise Procedure

We can ensure ε-differential privacy by adding statistical
noise such as Laplace noise [6]. The Laplace Distribution
(centered at 0) with scale b is the distribution with probabil-
ity density function:

Lap(x|b) = 1
2b

exp(−|x|
b
)

To ensure ε-differential privacy our value for b is 4 f
ε

[6].
4 f represents the global sensitivity of the query. Sensitivity

is defined as the maximum query result difference between
any two databases that only differ by one element (i.e. an
individual being included or not included in a database). The
formal definition of sensitivity is:

4 f = max|| f (D1)− f (D2)||1

where the maximum is over all pairs of datasets D1 and D2
from the space of all possible databases differing by at most
one element, and || · ||1 denotes the l1 norm.

Therefore ensuring ε-differential privacy involves adding
Lap(4 f

ε
) noise to the query result.

3 Related Work

3.1 Cryptographic Protocols

Our differentially private approach shares similarities with
distributed differentially privacy related work. Rastogi and
Nath [14] proposed the first differentially private aggrega-
tion algorithm for distributed time-series data that offered
good practical utility without a trusted central server. This
solution had two main drawbacks: an extra round of inter-
action between the aggregator and users for decrypting the
sum, leading to high communication costs, and the lack of
fault tolerance (i.e. requires all users to be online until de-
cryption is completed, which may not be practical in many
mobile sensing scenarios due to user mobility and the hetero-
geneity of user connectivity). To overcome the extra round
of interaction, E. Shi, T-H.H. Chan, E. Rieffle, R. Chow and
D. Song [16] proposed a Diffie-Hellman-based encryption
scheme; however, this was not fault tolerant as it still relied
on all users being online to contribute their encrypted data
and noise.

Fault tolerance was addressed a year later with a new
scheme by T-H.H. Chan, E. Shi, and D. Song [3]. They
achieved fault tolerance by constructing a binary interval tree
over the n users, allowing the aggregator to estimate the sum
of contiguous intervals of users as represented by nodes in
the interval tree. This is used to handle user failures, joins,
and leaves with small logarithmic communication and esti-
mation error. However, since each node’s data is aggregated
into multiple sums, a large noise is added to each node’s data
to provide differential privacy which leads to high aggrega-
tion error on large systems relative to related works.

Both [16] and [3] require the decryption to traverse the
possible plaintext space of the aggregated value, which is
very expensive for a large system with large plaintext space.
Especially in the case of mobile sensing, the plaintext space
of some applications can be large. The approach of Q. Li
and G. Cao [9] retains the same data perturbation strategy
as [16] but improves that encryption scheme by using PRF
(Pseudo-Random Function) computations over modular ex-
ponentiation.
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Instead of having a key dealer to distribute keys to all users
that they would use for subsequent queries, Jawurek et al.
[7] uses a key authority replaces the key dealer and users
encrypt their data and randomness using the public key of
the key authority. The aggregator and key authority then bi-
directionally communicate to decrypt the noisy sum. This
scheme handles fault tolerance and dynamic joins/leaves, but
still allows for collusion between the aggregator and key au-
thority. The scheme of Rane et al. [13] involves only the ag-
gregator and users with no other system components while
ensuring fault tolerance for any number of users through
Shamir’s secret sharing. The drawback is this paper did not
incorporate differential privacy, aggregator and user commu-
nication is bi-directional, and the secret sharing scheme is
relatively inefficient (O(n2) where n is the number of total
users). Bindschaedler et al. [2] uses the same scheme but
incorporates differential privacy at the cost of efficiency.

3.2 Practical Systems

There has also been prior work in constructing practical
privacy-preserving systems. PrivStats [12] is a system
for computing aggregate statistics over location data in a
privacy-preserving manner. However, PrivStats relies on the
use of an anonymization network and any aggregation func-
tions must be able to run on homomorphically encrypted
data. [15] proposes a data dissemination platform that sup-
ports untrusted infrastructures. However, this system does
not support persistent user data – aggregate computations
are performed on live streaming data from clients. In Prio
[4], another privacy-preserving system for the collection
of aggregate statistics, all queries must be performed on
Affine-Aggregatable Encodings (AFEs); however, we avoid
this limitation by performing all queries on plaintext values.
[10] provides a new communication efficient and privacy-
preserving data aggregation protocol but relies on the use of a
trusted third party for key setup. Chorus [8] presents the first
differentially private practical approach for SQL queries; this
work focuses on relational databases and does not involve the
data collection aspect.

3.3 Contribution

In this project, we contribute a practical system for privacy
preserving queries that: (1) does not depend on clients (data
sources) to be constantly online/available, (2) allows for data
analysts and OSP infrastructure to be untrusted, (3) allows
any aggregate function to be computed over data (from sim-
ple queries to more complex machine learning models) and
(4) incorporates differential privacy.

4 Threat Model

We can split up the entities of this protocol into three main
components: users (mobile devices uploading data), the on-
line service provider, and data analysts (clients who would
like to perform aggregate queries on user data). We take on
the assumption that a majority of distributed users are hon-
est (prevention against data pollution attacks are discussed
in Section 5.7.3). We consider an untrusted threat model for
the online service provider (a tangible example of this is E-
mission) that consists of the machines that store the user en-
claves, the shared encrypted and persistent database, and the
machine that hosts the aggregate enclave). We also consider
the data analyst/querier untrusted. Overall, this is a strong
threat model that assumes trust only in a majority of users.

5 Design

5.1 Online Service Provider Infrastructure

For an online service provider to make use of our protocol,
the infrastructure would need to augmented by the following:
an encrypted and persistent database containing all user data,
a set of secure hardware enclaves (one per data source/user)
and a separate aggregate secure hardware enclave.

5.2 Overview

At a high level, the protocol can be broken up into three
main steps. In the first step, users join the online service
provider’s infrastructure, engage in remote attestation of the
user enclave reserved for them, and send their generated se-
cret key to the enclave so that the enclave can decrypt user
data and thus participate in queries. The code in the user en-
clave also attests code in the aggregate enclave when com-
puting a query - this propagated aggregation provides a level
of trust amidst an untrusted infrastructure. In the second step,
users upload data to the shared encrypted database and this
is the only time the user has to be online. The third step
involves a data analyst submitting a query and the query be-
ing computed throughout the OSP infrastructure. The ag-
gregate enclave broadcasts the query and its parameters to
the user enclaves machines which notify the user enclaves to
participate in the query. These enclaves decrypt and perform
the query function over their dedicated user’s data from the
database and forward the intermediate results to the aggre-
gate enclave. The aggregate enclave performs the final ag-
gregation computation, and will add noise to the final result
based on certain privacy parameters which will be covered
in more detail later.

3



5.3 User Privacy Budgets
To provide differential privacy for user data, we allocate a
privacy budget εi,m for each user ui independently for a dif-
ferent segments of times (in this case, months m). Privacy
budgets are tied to users as opposed to queriers because mul-
tiple queriers could collude to learn more information than
they would learn alone. Each query provided by the data an-
alyst includes an εq that represents the differential privacy
budget for that query. A user ui’s data is only included in the
results of a query if they have data related to the query and if
εi,m−εq > 0; if included, their privacy budget decrements by
the query privacy budget εi,m← εi,m− εq. As a result, a data
analyst can specify a large value for εq providing a more ac-
curate query result, but this reduces the number of times that
a data analyst can query that data.

5.4 Database
All the user data is stored in a shared, encrypted, and per-
sistent database. The primary database index is the user’s
unique id followed by a month. Note the choice of month
as the granularity of data storage: this decision was based
off a comparison of efficiency and user privacy. Using more
granular time leads to greater visibility of user activity. The
benefit of a more granular time is that less data would have
to be streamed to a user enclave during query computations.
On the other hand, a more coarse time (e.g. a year) means
that all user data for a year would have to be sent to the user
enclave upon a query during that year.

5.5 Query
A query Q is submitted by the data analyst and comprises
a number of parameters. These parameters are currently the
query type, time range, and location range. A differential pri-
vacy budget εq is also included in the query. Our system sup-
ports any query that ensures differential privacy by adding
noise which includes simple aggregation and machine learn-
ing queries. This is because the function is calculated over
plaintext (obviating any restrictions of computing over en-
crypted data).

5.6 Enclaves
There are two main benefits of enclaves: secure computation
and remote attestation. Enclaves provide a secure execution
environment, meaning that the enclave memory space is en-
crypted so any outsider including the kernel and hypervisor
can not infer anything about the computation. Remote attes-
tation of an enclave allows an outsider to verify the identity
of a program being run by the enclave [11]. Once attested,
the enclave can no longer be modified. This characteristic of
enclaves allows for secure offline computation of user data.
Attestation of user enclaves is done by users; attestation of

the aggregate enclave is done by the user enclaves. We call
this propagated attestation.

Figure 2: This represents propagated or chained attestation -
our fundamental mechanism of ensuring trust in an untrusted
infrastructure.

5.7 Protocol

Our protocol supports three main system operations: User
Join, User Upload Data, and Aggregate Query Computation.

5.7.1 User Join

In this phase, users join the online service provider infras-
tructure and engage in steps to set up their respective enclave.

1. User ui sends a JOIN message to the OSP.

2. The OSP allocates an enclave ei for ui and load ei with
the appropriate user enclave code pages.

3. The OSP sends contact information for enclave ei to
user ui.

4. User ui engages in remote attestation of ei, generates a
secret key ski, and then sends ski to the now attested ei
which will be stored in enclave memory.

The symmetric secret key the user generated in this step is
used for encrypting and decrypting their sensitive data. Once
the user’s respective enclave has this key, their enclave is able
to decrypt all of that user’s data; this provides a proxy for
users to participate in query computations. This setup allows
for users to be offline during the query computation process.

Also note the remote attestation of the user enclave – this
begins the propagation of ensuring trust throughout the OSP
infrastructure. The user enclave’s code attests the aggregate
enclave’s code before sending it sensitive intermediate query
results. This attestation is necessary as the OSP could re-
place aggregate enclave code with malicious code that could
leak sensitive data.

In the attestation process, the user compares the hash pro-
vided by the user enclave with a hash from an attestation
service, say Intel Attestation Service (ISA).
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Figure 1: Aggregate Query Computation: In this phase, an aggregate computation is conducted over user data. Recall that this
phase does not require user involvement - the decryption of data is done by user enclaves.

5.7.2 User Upload Data

In this phase, users upload their encrypted data to the OSP
database where it is indexed and stored for later access.

1. User ui sends month : Eski(data) to the OSP.

2. The OSP appends the data in an encrypted database,
indexing by user i’s user id and the month.

3. The OSP replenishes user ui’s privacy budget for that
month.

Note that the month and user id are not encrypted. This is so
the database can index the encrypted data accordingly.

5.7.3 Aggregate Query Computation

In this phase, a data analyst submits an aggregate query to
be calculated on user data using the OSP infrastructure. See
Figure 1 for a graphical representation of this phase.

1. Data analyst A sends Q,εq to the aggregate enclave e∗
where Q is composed of a query type, time range, and
location range. εq is the differential privacy budget.

2. e∗ sends Q,εq to all user enclaves.

3. For all users ui, user enclave ei request from the
database the data for the relevant months based on the
time range of the query Q.

4. Database streams encrypted data from database to en-
claves.

5. For all users ui, user enclave ei decrypts data with sym-
metric key and computes an intermediate query func-
tion over the relevant data.

6. For all users ui, user enclave ei attests e∗ and if verified,
then it sends the unencrypted result to aggregate enclave
e∗.

7. The aggregate enclave e∗ performs the final query func-
tion over this data, only including data if the εq > user’s
privacy budget εi,m for month m. If the user’s data is
included in that query, εi,m← εi,m− εq.

8. The aggregate enclave e∗ adds Lap(4 f
εq
) noise to the

final query result and sends to the data analyst.

Note that the amount of data sent from the database to the
user enclaves is dependent on the granularity of the database
indexing as well as the time range given in the query. Be-
cause of the variable length of this data and the use of
lightweight enclaves, data is streamed into the user enclave.
As a result, streaming algorithms must be used for computa-
tion.

In the case that a subset of users are potentially malicious,
the code inside user enclaves can perform data validation fil-
tering and the aggregate enclave ε∗ can additionally attest
user enclaves to ensure that this filtering takes place.
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6 Evaluation

6.1 Implementation
We provide a Python implementation of the aggregate query
computation component of the system. The enclaves are
implemented as Docker containers that run SCONE [1].
SCONE runs programs inside secure enclaves, can trans-
parently encrypt files and network traffic, attest programs to
ensure that only the correct, unmodified programs are exe-
cuting, and is compatible with Docker. Users have privacy
budgets stored in their user enclaves and decrements them by
the query privacy budget if a user has enough privacy budget
and has data satisfying the query.

A Flask server is set up to handle all queries which are
modeled by sending a POST request containing the query
to the server. Upon receiving a query, the aggregate en-
clave broadcasts the query and its parameters to all of the
controllers of the user enclave machines. A controller is
responsible for initialization and management of enclaves
within a given machine. The controllers then “unpause”
the user enclaves and forward the query to the user en-
claves. The user enclaves compute the intermediate query
function and send the result to the aggregate enclave. Once
this is done, the controllers “pause” the user enclaves. The
aggregate enclave does the final computation and returns
the result to the querier. The code is made available at:
https://github.com/jesbu1/scone sgx scripts.

6.2 Experiment Setup
For our evaluation, we analyze the scalability of increasing
number of users on the overall query latency. Various exper-
iment details are listed below:

• Query Details:

– Type: Summation

– One time period

– One location area

• All user enclaves are grouped in a single Intel SGX ma-
chine.

• The aggregate enclave shares the same machine as the
user enclaves.

• Query latencies were recorded for every multiple of 5
users from 5 to 50.

• Experiment was ran in both simulation (no SGX) and
hardware (with SGX) modes in order to observe the
overhead for using enclaves.

• Users enclaves had immediate access to their raw data
via a JSON file inside their enclave (no streaming or
decrypting from an encrypted, persistent database).

For this experiment, we toggle between the different ex-
ecution modes: simulation or hardware. We instantiate the
aggregate enclave Docker container. For the set number of
users, we also instantiate user enclave containers. We start
a timer, send the query, and measure the amount of time un-
til the final computation is sent back to the querier. After
the query is completed, the user enclave Docker containers
are removed and the aggregate enclave Docker container is
removed once the experiment is complete.

6.3 Experiment Results
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Figure 3: This graph demonstrates the effects of increasing
the number of users on overall query latency and displays the
overhead of using SGX.

The linear relationship of both curves in Figure 3 are ex-
pected as each user has their own enclave and each user
must observe their data to determine if they can compute the
query. The key takeaways are how the latencies scale for a
certain amount of users sharing one machine and the enclave
overhead. The enclave overhead latency can be observed
from the difference between the two lines. From this experi-
ment, we can see the average latency for running a query in
simulation mode is 0.62 seconds while using SGX amounts
to an average query latency of 3.74 seconds. Thus the aver-
age SGX overhead is 3.12 seconds. This is an indication that
we need to split users across more machines (in the case of
SGX).

7 Conclusion and Future Work

In this project, we contribute a practical system for pri-
vacy preserving queries using hardware enclaves. Our de-
sign allows for offline computation, an untrusted online ser-
vice provider infrastructure, flexible aggregate queries, and
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differentially private queries. We also provide a proof-
of-concept implementation of the query computation using
SGX.

Our future work hopes to tackle the potential scalabil-
ity limitations, possibly exploring partitioning user enclaves
onto different machines. Moreover, as our system streams
all of the data for a user for the queried month, further anal-
ysis is needed to measure the effect of the amount of data
on the overall efficiency and speed of the query computa-
tion. Furthermore, there is a possibility of network traffic
from database to user enclaves revealing private informa-
tion – more exploration into the obliviousness of network
communication is needed. Also, we aim to support more
query types such as origin-destination pairs as well as exam-
ine ways to replenish user privacy budgets. Additionally, in
order to prevent malicious queriers from depleting the pri-
vacy budgets of the users, it is important to include querier
access control and provide users with the ability to specify
which queriers they want to answer queries to. We are ex-
cited to continue working on our design and incorporating
it with data collection and aggregation platforms such as E-
mission.
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