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Abstract—In this work we present SaNSA, the Supercomputer
and Node State Architecture, a software infrastructure for histor-
ical analysis and anomaly detection. SaNSA consumes data from
multiple sources including system logs, the resource manager,
scheduler, and job logs. Furthermore, additional context such
as scheduled maintenance events or dedicated application run
times for specific science teams can be overlaid. We discuss how
this contextual information allows for more nuanced analysis.
SaNSA allows the user to apply arbitrary attributes, for instance,
positional information where nodes are located in a data center.
We show how using this information we identify anomalous
behavior of one rack of a 1,500 node cluster. We explain the
design of SaNSA and then test it on four open compute clusters
at LANL. We ingest over 1.1 billion lines of system logs in our
study of 190 days in 2018. Using SaNSA, we perform a number
of different anomaly detection methods and explain their findings
in the context of a production supercomputing data center. For
example, we report on instances of misconfigured nodes which
receive no scheduled jobs for a period of time as well as examples
of correlated rack failures which cause jobs to crash.

Index Terms—system state, node state, health monitoring,
anomaly detection, software architecture

I. INTRODUCTION

Roughly two decades ago the “Beowulf Revolution” [1]
began to take over the field of supercomputing. While we
often refer to these machines today simply as clusters, they
are extremely similar in nature and are identified by being
comprised primarily of commodity hardware technology that
typically makes use of open source operating systems, mid-
dleware, and tools. The extreme-scale systems which push the
bleeding-edge of technology forgo these constraints in several
areas to achieve extreme scales.

The move to open source operating systems and middleware
has had many benefits but one of the problems is that it can
be difficult to standardize. Of interest to our discussion is the
notion that capturing the state1 of the individual nodes of the
cluster over time requires a great deal of knowledge that must
be acquired from many different sources. While historically
this feature would have been provided by a supercomputing

1State refers generally to what a node or supercomputer is doing such as
running a job, booting up, or down for maintenance.

vendor, today there exists relatively poor fine-grained informa-
tion about the state of individual nodes of a cluster. Operators
and technicians of data centers have dashboards which actively
provide real time feedback about coarse-grained information
such as whether a node is up or down.

The Slurm Workload Manager, which runs on most of the
U.S. Department of Energy’s clusters, has one view of the
state of the nodes in the system. Slurm uses this to know
whether nodes are available for scheduling, jobs are running,
and when they complete. However, there are other views such
as the node’s own view as expressed via system logs it reports
to centralized logging infrastructures and administrator views
which annotate sets of nodes in states such as being upgraded,
serviced, or allocated for special scientific workloads.

Sometimes these views conflict, and different consumers
of this data have different needs and place different value
judgments on it as well. It would not be unreasonable for
one to say that it does not matter that a node is up if it
is unreachable and not able to be scheduled by the resource
manager. That would be a very user-centric view. However,
from the perspective of node reliability, it seems incorrect to
count it as truly down if the hardware was up the entire time
and some other system, perhaps a software timeout, kept it
from being accessible.

As system architects interested in understanding cluster
health over time, we believe that there does not exist a
system for properly capturing the information we need and
performing the analyses necessary. Therefore, in this paper,
we present SaNSA, the Supercomputer and Node State Ar-
chitecture, a software architecture and infrastructure we have
designed which addresses these needs at Los Alamos National
Laboratory (LANL).

In Section II, we first describe the architecture of SaNSA.
Then, in Section III, we apply SaNSA to several problems
to demonstrate the power that is enabled by the underlying
state architecture. We identify anomalous nodes on a large
production cluster at LANL and then use topology-aware
analysis to identify a rack in that same cluster that is being
under-utilized by the scheduler. We then show how SaNSA



can be used to explore the state transition probabilities of
a large open compute cluster to identify the signature for
“normal” operation in a typical cluster node. We also calculate
the percentage of time this cluster spends in each state and hint
at future work in Markov processes. We then use SaNSA to
explore correlated failure events that involve hardware failures
that ultimately result in job interruptions. In Section IV,
we look at some related work and finally conclude with a
discussion of our future plans in Section V.

II. SANSA ARCHITECTURE

Figure 1 depicts the design of SaNSA which combines
data sources (the input), a central repository for intermediate
storage, and an interface for a variety of users (the output).
Multiple data sources can be used as inputs to make up the
node and system state. We discuss the data sources used in our
initial experiments with SaNSA in Section II-A. These sources
are then aggregated together depending on the view to resolve
the state from a given perspective. Although rare, sometimes
different source inputs will contradict such as a node’s system
log stating that it was up yet the resource manager cannot
communicate with that node and marks it as a lost connection.
Which state is the node in? It is a matter of perspective and
different analysts need both pieces of information for different
reasons at different times. The different states we have defined
at this time are discussed in Section II-B. However, SaNSA
is extensible and we expect more states to be added as we
expose signals to capture the state. Once the state information
is assembled, analytics can be performed. We outline a number
of different applications in Section III.
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Fig. 1. A visual depiction of the flow of data within SaNSA. The Ingestor
& Aggregator is capable of pulling data from multiple sources, highlighting
SaNSA’s capability of easily combining more data sources in the future.
Moreover, multiple user interfaces allow analyses to be performed by multiple
actors, suggesting that SaNSA can be valuable across teams and management
hierarchies.

A. Data Sources

Currently, the system directly ingests data from two compo-
nents: Elasticsearch [2] and the Slurm Workload Manager [3].
Elasticsearch, a distributed search and analytics engine capable
of fast and efficient data level queries, handles system logs.
As each compute node produces millions of lines of system

TABLE I
DATA SOURCES FROM CLUSTERS AT LANL INGESTED INTO SANSA.

SYSTEM SIZES INCLUDE SOME NON-COMPUTE NODES SUCH AS
ADMINISTRATIVE NODES, IO NODES, ETC.

Cluster Name Program Processor Total Nodes
Grizzly CTS-1 Intel Xeon Broadwell ˜1500

Wolf TLCC2 Intel Xeon Sandybridge ˜640
Snow CTS-1 Intel Xeon Broadwell ˜380

Woodchuck N/A Intel Xeon Haswell ˜200

logs a day, Elasticsearch enables easy and quick data retrieval.
LANL’s Elasticsearch infrastructure not only has full system
logs from all nodes, but also telemetry as well as LDMS [4]
metric data for an increasing number of systems.

SaNSA also ingests data from the Slurm Workload Manager.
The supercomputers at LANL use this manager for handling
the queuing and distribution of user jobs across all the compute
nodes. The software continuously produces data about job
completion status, logging various end states. A portion of this
data is fed to Elasticsearch which relays the data to our system.
The rest of the data, such as job reservations for system
maintenance / upgrades as well as dedicated user reservations
is ingested directly by SaNSA.

SaNSA also allows for non-time-series data to be ingested,
such as attributes about the nodes. In the study presented
here, the attributes used are the node topology and placement
within the data center. This allows us to determine in three
dimensional space where each node is physically located.
Given the volume of data that we will ingest, using machine
learning techniques to find correlations on data center positions
could prove useful and may lead to insights.

Table I lists the clusters used in this study. These represent
easy-to-access machines that execute unclassified computing
jobs. While these are also some of the smaller systems,
we are in the process of moving SaNSA to LANL’s larger
supercomputers. In Table I, CTS, or Commodity Technology
Systems, are the NNSA’s standardization approach across
many laboratories for clusters that are relatively standard
technology and well characterized. TLCC are TriLab Linux
Capacity Clusters and represent a similar design philosophy
but simply older generation technology. Woodchuck is a one-
off system for data analytics and, as such, does not fall into a
CTS or TLCC category.

The time period under study was from February 20, 2018 to
August 31, 2018 (190 days). From the perspective of system
logs, we ingested over 1.1 billion individual lines (462 million
from Grizzly, 116 million from Wolf, 549 million from Snow,
and 23 million from Woodchuck).

B. Node States

Node states make up the core of SaNSA and through the
compilation and aggregation of data from these sources, we
create an internal view of the state of not just the individual
nodes, but also as an aggregation of components that form
a single view of the overall system as a function of time.
SaNSA’s flexible state architecture allows for the definition of



new states easily based on conditions specified by configura-
tion parameters. Based on the current data, we have identified
8 different states:

1) DOWN - A node becomes unavailable and is followed by
a reboot 2.

2) CONNECTION_LOSS - The Slurm Workload Manager
loses contact with the node but the node is still active.

3) BOOTING - The node is booting, starting services,
loading modules / drivers, etc.

4) IDLE - The node is up but not currently running a
job. Nodes will appear as IDLE as Slurm builds large
allocations for a pending job that it has selected for
future execution, or for a job that has a specified advance
reservation. At this time we have not yet identified a
“Slurm is idling this node for a big upcoming job” signal
(work in progress).

5) JOB_RUNNING - A user-defined Slurm job is running
on this particular node.

6) ADMIN_RESV - The node is in a reserved state for HPC
administrative maintenance and improvement work.

7) RESERVED_IDLE - The node is in reserved state for
a user. This is usually done when groups of nodes are
allocated to certain projects to accomplish required work
deliverables for mission tasks so that the resources are
dedicated to only those users.

8) UNSCHEDULED_RESV - Unscheduled outages such as
power outages (e.g. lightning strikes) and emergency
maintenance. We would expect these to be rare events.

C. State Priorities, Compilation & Aggregation

SaNSA builds the state for each node over time based
on information gathered from different sources in a “patch-
work” way. The patchwork analogy is particularly true in
the sense that with SaNSA, states can have priorities. For
instance, for the states we defined in Section II-B, we set
UNSCHEDULED_RESV and ADMIN_RESV as the highest pri-
orities, respectively. What this means, is that if we record a
node (or nodes) as DOWN or any state, these priority states
“overlay” on top of the other states effectively shadowing
them. This is important because when we calculate statistics
such as downtime, we do not want to include events that
occurred during dedicated administrative windows when many,
often repeated reboots of nodes occur that greatly skew
statistics. While calculating those statistics themselves may
be interesting, they are outside the scope of what we are
discussing in this paper. They are, however, available within
SaNSA under the shadowed overlay.

Slurm’s view of a node’s state is probably the most im-
portant view as it represents schedulability of resources and
ultimately impacts the utilization of the system resources
for productive computation. To determine loss of connection,

2Note this is an example of different views (perspective) of DOWN. Compare
this with CONNECTION_LOSS which describes the node as unavailable but
active. This difference can be important depending on the type of analysis
being done.

we search for messages from the process slurmctld con-
taining the phrase not responding, setting DOWN.
This indicates that Slurm has identified that a node is not
responding and marking it as “down.” It is important to
note that this is Slurm’s notion of down and we term this a
CONNECTION_LOSS instead. Later we will discuss the node
DOWN state. The following is a single record of a sample
response:

Time: 6/9/2018, 3:29:14 AM, Host:

gr-master, Ident: slurmctld

[2018-06-09T03:29:13.803], "error:

Nodes gr[0084,0097] not responding,

setting DOWN"

This record explains that at 3:29:14 AM on 6/09/18, Slurm
lost connectivity with nodes 84 and 97 of Grizzly. This
allows us to categorize the state of those nodes of Grizzly
as CONNECTION_LOSS starting at that time. Next, we must
figure out when the nodes come back.

To do this, we then check when the nodes become re-
sponsive again. The query searches for log messages from
slurmctld containing the phrase now responding. The
following is a single record of a sample response:

Time: 6/13/2018, 10:07:09 AM,

Host: gr-master, Ident: slurmctld

"[2018-06-13T10:07:00.379] Node gr0084

now responding"

This record explains that on 6/13/2018, Slurm reestablished
communication with node 84 of Grizzly at 10:07:09 AM.
We have now established the start and stop times for the
CONNECTION_LOSS state.

In SaNSA, the difference between CONNECTION_LOSS
and DOWN is determined by whether the node ends up booting
after a lost connection. Properly differentiating these two states
is clearly important.

To establish booting, we search for system logs from
the process systemd and containing the phrase Startup
finished. The following is a single record of a sample
response:

Time: 6/13/2018, 10:07:09 AM, Host:

gr0084, Ident: systemd, "Startup

finished in 19.988s (kernel) + 10min

57.968s (userspace) = 11min 17.957s."

This record explains that at 10:07:09 AM on 6/13/18, node
84 of Grizzly was booting for the last 11 minutes and 17.957
seconds. This allows us to categorize the state of node 84 of
Grizzly as BOOTING for that time period. However, notice
that we previously categorized the time up to 10:07:09 AM
as CONNECTION_LOSS. This appears odd, as now with the
BOOTING state information, those 11 minutes would seem as
having 2 states. But in this case, BOOTING takes a higher
priority than CONNECTION_LOSS and therefore, the last
11 minutes of the CONNECTION_LOSS period would be
recategorized as BOOTING, as depicted in Figure 2. Although
the node still appears down (recall, Slurm’s terminology) to
the job manager, the node is actually in a BOOTING state



and therefore is labeled as such. SaNSA also replaces the
CONNECTION_LOSS states with DOWN at this point.

|
6/9/18 3:29:14 AM

|
6/13/18 10:07:09 AM

CONNECTION_LOSS

|
6/9/18 3:29:14 AM

|
6/13/18 10:07:09 AM

DOWN

6/13/18 09:55:51 AM

BOOTING[2]

[1]

Fig. 2. In pass 1, the period of time from 6/9/18 3:29:14 AM to 6/13/18
10:07:09 AM has been categorized as CONNECTION_LOSS. In pass 2, more
information about the BOOTING state has been discovered and part of the
time initially categorized as CONNECTION_LOSS is now categorized as
BOOTING. This also allows SaNSA to give finer-grained information to the
connection loss and recategorize it as a DOWN event. The Slurm Job Manager
only offers the perspective of availability, whether it can access the node
or not; by incorporating further system log information, we develop a more
holistic system view, indicating that part of the unavailable time is actually
during the BOOTING phase of node 84.

The Slurm job logs reveal the times a job starts, ends,
and what nodes it runs on as well as the exit code. This
exit state can be interesting for analysis separately as has
been demonstrated [5] and we save this in SaNSA for future
analysis. The following is a single record of a sample response:

Time: 3/19/2018, 12:45:10 PM,

Host: gr-master, Ident: logger,

JOBCOMP:"NULL", "grizzly",

"15075159", "JOBCOMP", "2018-03-15

12:32:49", "2018-03-19 01:21:45",

"2018-03-19 01:21:45", "2018-03-19

12:45:10", "1641512160", "userA",

"userA", "standard", "standard",

"40032", "gr[0003-0164, 0166-0376,

0417-0425, 0427-0454, 0540-0547,

0578-0717, 0758-0760, 0833-0885,

0891-1021, 1023-1266, 1268-1297,

1299-1359, 1361-1387, 1486-1490]",

"job_name", "0:0", "SLURM",,,,,,,,,

"COMPLETED", "1112",, "script_name",,

"0:0",,"1:0","", "1641512160","",

"","57600", "0"

This record explains that 1112 nodes of Grizzly were running
a job from 01:21:45 on 3/19/18 to 12:45:10 on 3/19/18. This
allows us to categorize the state of those 1112 nodes of Grizzly
as JOB_RUNNING for that time period.

At this point we have “patches” of states in time for many
(likely most or all) of the nodes of the cluster(s) under study.
We know when the nodes had connection loss to the resource
manager and were down, booting, and running jobs. This
allows us to draw some very reasonable assumptions about
the node being up and, therefore IDLE, during the intervening
periods. As such, we fill in the gaps with this time. Data can be
cleaned up here by passing these IDLE periods through the

system logs for the nodes in question and ensuring that the
node was logging information during that time. As is likely
obvious, this is challenging and an approximation as HPC
systems are tuned to reduce logging and jitter so this step can
be a decent estimate and check but there exists no absolute
truth. Fundamentally, that is the problem we are facing and
efforts like SaNSA and analytics based on them are somewhat
fuzzy in nature.

The final phase involves reservation shadowing discussed
earlier. SaNSA uses as input a separate reservation data
source which defines classes of reservations, the time win-
dow, and their priorities. At this time, we have defined
these reservations: UNSCHEDULED_RESV, ADMIN_RESV,
and USER_RESV. The first two were defined in Section II-B
when discussing node states. The USER_RESV reservation
state is a special state when portions of a system are dedicated
to a groups of users exclusively. This effectively makes a
subset of a cluster “private” to them and is used to force
particular work through a system at high priority. We rename
the state here, RESERVED_IDLE to indicate that the state of
the node is idle during this time even though it is reserved.
Once a user runs a job in this reservation, it transitions into
JOB_RUNNING. Effectively one would expect to see a very
small amount of time spent in RESERVED_IDLE because,
presumably, the users allocated to those cycles would instead
be running jobs (JOB_RUNNING). If, instead, the time spent in
RESERVED_IDLE was large, it might suggest the dedication
to this group was wasted. Having tools like SaNSA to easily
calculate this is valuable for a production data center3.

We now turn from describing the design and architecture of
SaNSA to some applications of it on real data at LANL.

III. APPLICATIONS

The system described previously provides the interface for
a number of forms of analysis. We outline some existing
uses and the insights that have been provided so far. By
first building a core system, SaNSA, that gathers the system
and node states over time, we are then empowered to query
SaNSA and present different analyses. We show below several
different applications and the insights gleaned from them.

A. Anomaly Detection

All the clusters that we have analyzed at this time are
homogeneous and that is usually the case for contemporary
production data centers. Identifying nodes within a cluster that
are deemed anomalous is therefore valuable as it can lead to
identifying nodes that may need attention or servicing. Here
we look at the Grizzly cluster (see Table I) which runs the
TOSS [6] Linux operating system.

For each node i, we compute the value xi,j for each state
j where the value xi,j is the percent of time node i spends in
state j. We apply a multivariate Gaussian distribution to the
data, creating an array of probabilities corresponding to each

3We calculated the time wasted in this state and found it to be so low that
it was not worth discussing and, therefore, it is not shown as an application
of SaNSA in Section III.



node in Grizzly. The lower the probability, the more anomalous
the node. We define a value ε and say if the probability p < ε,
then that node is anomalous. This value for ε is variable and
chosen so that the number of anomalous nodes is roughly
5. It is, however, important to note that anomalous is not
equivalent to ‘bad’ but rather an indication of something rare
or unusual. In this case, by setting ε to 10−61, we end up with
the following anomalous nodes: 7, 426, 1200, 1311, 1319.
Figure 3 shows the state transitions for the 5 most anomalous
nodes for the ε chosen.

Fig. 3. The 5 most anomalous nodes identified on the Grizzly cluster over
the 190 day period using an ε of 10−61

Node 426 is identified as anomalous due to the amount of
time that is spent in the CONNECTION_LOSS state. For the
first half of March, 2018 this node appears to be having a
connection problem and could not be reached by the Slurm
Workload Manager. Figure 4 presents a boxplot of the percent
of time Grizzly nodes are in the CONNECTION_LOSS state
and identifying node 426 as spending over 10% of the time
in 190 days in this state. From this, when compared with the
other nodes of Grizzly, it is clear why this node was identified
as anomalous.

Nodes 1200, 1311, and 1319 are identified as anomalies as
well; this can be confirmed in Figure 5 where they appear
to spend an relatively high percent of time in a BOOTING
state. One way to look at these results, however, are that even
though this amount of time spent booting is unusual compared
to other nodes of Grizzly, they do not in the end account for
a particularly large amount of total time spent in this state.
One might consider that node 426 spending 10% of its time
in CONNECTION_LOSS is more impactful than these three
nodes spending 1.5% of their time BOOTING.

Node 7 conspicuously stands out as an anomaly, spending a
large amount of time in ADMIN_RESV. This can be confirmed
in Figure 6 where node 7 is identified as an outlier, over 16
standard deviations above the mean. It would appear that the
administrators of Grizzly had node 7 removed from operation
for roughly 27% of the time during the 190 days under study.
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Fig. 4. Boxplot of the percent of time all Grizzly nodes are in a
CONNECTION_LOSS state. Node 426 is the outlier averaging about 10%
of the time in this state while most other nodes spend almost no time in this
state (also shown later in Table II).
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Fig. 5. Boxplot of percent of time Grizzly nodes are in a BOOTING state.
While three nodes are identified as outliers, the total percent of time these
nodes spend BOOTING does not account for much.

These examples demonstrate the value of SaNSA in that it
allows us to explore other analyses of node and system state
to both identify and explain anomalies.

B. Topology and Node Placement in the Data Center

Positional effects in supercomputer data centers can be
impactful and meaningful as studies have shown. For instance,
in [7], Sridharan shows increased fault rates correlated with the
vertical position of nodes in the rack of a large supercomputer.
In SaNSA, all nodes can be enhanced with arbitrary attributes
and we utilized this capability with the Grizzly cluster to en-
code a node’s data center row number, rack number, scalable
unit (SU) number, and its location vertically and horizontally
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Fig. 6. Boxplot of the percent of time Grizzly nodes are in an ADMIN_RESV
state. As identified through the anomaly detection algorithm as an anomaly,
Node 7 is over 16 standard deviations above the mean.

within the rack. This allows a positional analysis of the cluster
in case this extra information reveals something interesting.

We explored the total time Grizzly nodes spent running
jobs as compared to the positioning of the nodes in the data
center. The results are shown in three dimensions in Figure 7.
One particular rack, number 13, can be clearly identified as
receiving about half as many total job hours scheduled than
all the other racks on Grizzly.
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Fig. 7. The 2 rows of Grizzly, comprised of 8 scalable units (SUs), each
containing 4 racks for a total of 32 racks. Racks contain between 44 and 47
nodes with blanks clearly observable and by design (not missing data). The
plot colors the amount of time each node spent in the JOB_RUNNING state.
The orange shows rack 13 has spent considerably less time than other nodes
running jobs.

Using SaNSA, we explored this more deeply in Figure 8.
Here, rack 13 is singled out as a single line while the other

31 racks are averaged together into another separate line
(for clarity). One can clearly see that rack 13 had a period
of time where it behaved differently than the other racks
but, around May 10th, began receiving approximately similar
job workloads. It might be tempting to make assumptions
about the state of rack 13’s nodes during the anomalous time
period however, due to the states we have captured we know
precisely the states of those nodes over that time period.
Further exploration revealed that the nodes were on for almost
that entire time but were IDLE (it seems unlikely Slurm
reserved the nodes for such a long period for a pending large
job so this is ruled out). HPC administrators were able to
confirm merely that rack 13 had cooling problems but were
not aware it was not receiving an equal share of jobs. Upon
further root cause analysis of specific logs of the nodes in
rack 13, we determined that the Slurm configuration file had
not been properly propagated to the nodes in the rack. The
important result is that SaNSA identified an issue that the
administrators were not previously aware of. This is precisely
the type of situation where a tool like SaNSA will bring value
by drawing attention to anomalies for further investigation by
system administrators.
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Fig. 8. Grizzly’s rack 13 singled out as compared to all other 31 racks
of grizzly averaged together into a single line showing the time spent in
JOB_RUNNING. Separate analysis showed that rack 13 was not DOWN but
was IDLE during the period of inactivity where it was receiving a lower
amount of jobs.

C. State Transitions

The node states captured inside of SaNSA provide the
capability to calculate state transition probabilities. This can be
useful for getting a glimpse at system behavior as a whole. As
mentioned earlier, we have the capability of overlaying states
on top of other states, effectively shadowing and masking
the underlying one. We use this for ADMIN_RESV primarily
because, in general, we do not want to count events that occur
during these administrative outages.

In Figure 9 we show the state transition probabilities for
Grizzly without the ADMIN_RESV overlay. The diagram looks
very normal and seems to be what one would expect as the
nodes transition with high probability between the IDLE and
JOB_RUNNING states. Running jobs can be seen to very
rarely result in a lost connection or transition into a DOWN
node. We look at a few examples of these rare jobs that end
in crashed nodes in Section III-E.



TABLE II
PERCENTAGE OF TIME GRIZZLY NODES SPEND IN DIFFERENT STATES
OVER 190 DAY OBSERVATION PERIOD. DATA PRESENTED WITH AND

WITHOUT ADMIN_RESV OVERLAY STATE.

State % Time w/o Overlay % Time w/ Overlay
DOWN 0.46% 0.22%

BOOTING 0.04% 0.03%
IDLE 26.11% 22.80%

JOB_RUNNING 71.11% 70.68%
ADMIN_RESV NA 6.23%

CONNECTION_LOSS 2.28% 0.04%

Missing from this data is the amount of time spent in these
states but, certainly, this data is contained in SaNSA and
this would expand this work to more complicated analysis of
Markov processes. This is work in progress and beyond the
scope of this paper but we do present a summary of the data
in Table II.

We show in Figure 10 how the state transition diagram
changes when the ADMIN_RESV overlay is added. The picture
of the system becomes more complex as nodes are booted
about 5% of the time into an ADMIN_RESV state when they
need to be serviced. One can also see nodes returned to IDLE
when admin reservations end. Coupling Figure 10 with the
percentages of times spent in each state shown in Table II (%
Time w/ Overlay column) makes it more apparent that while
the transition diagram is more complex, most of the time spent
by nodes is spent running jobs, idle, or in maintenance by
system administrators. This seems like a healthy observation.

Table II allows us to observe that while we see the DOWN
state on the diagrams, the nodes of Grizzly are down for
between 0.46% and 0.22% of the time period measured - a
very small amount. We remind the reader that the IDLE time
is misleading as Slurm uses this notion of idle to build large
job reservations for jobs that have been waiting in the queue
for a long time. However, it does indicate an opportunity for
smaller preemptible backfill jobs that could run while Slurm
was building these allocations. The time spent in DOWN and
CONNECTION_LOSS are further discussed in Section III-D.

These transition probabilities could be used to generate a
model of a “normal” node of a system. At this time, we
combined all nodes of Grizzly into a single model but we
intend to look for clusters of state transitions. We suspect this
will be useful in identifying node behaviors quickly.

While it is tempting to make assumptions about Markov
processes from these results, this work is not presented here
as it is out of scope of this paper. Indeed, SaNSA has the
required components to allow for this analysis including the
holding time in a state before transitioning. We are exploring
continuous and discrete time Markov chain approaches and
leave that for future work.

D. Time Between Down and Connection Loss States

It is common to report on the mean time between failures
(MTBF) of HPC systems and use this as a measure of system
health. Others [8] have shown that this metric may not be the
best and may require more nuance such as sliding observation
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Fig. 9. State transition probabilities of the Grizzly cluster at LANL before
the ADMIN_RESV overlay is added. This shows at a glance what would be
expected behavior and high probability of transitioning between IDLE and
JOB_RUNNING states.

windows. At this time, with SaNSA, we do not have a state
specifically outlined as failure but we do have a down state.
Furthermore, we have already extracted administrative reboots
so there is at least some reason to believe these down events
are failure-related. This will be addressed in future work.

In Table III we present the time between DOWN and
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Fig. 10. State transition probabilities of the Grizzly cluster after the ADMIN_RESV overlay is added. Previous states are masked as they now occur during
admin reservation windows.

CONNECTION_LOSS states on the four clusters we studied.
This data is over the 190 day period previously outlined.
Figures 11 and 12 present the down and loss of connection
states as boxplots. This is an example of using SaNSA to get a
supercomputer perspective based on assembling the individual
states of the nodes that make up that supercomputer. The
time between the start of a state (such as DOWN) then is the
time between the start of that state across all nodes of that
supercomputer.

In the state transition analysis previously presented we
showed that the DOWN and CONNECTION_LOSS states do
not constitute much of the total time of nodes of Grizzly.
However, we can see in Table III that the events do occur at
an interval which would interrupt jobs that spanned the entire
cluster. The nodes of Wolf have no DOWN events because the
way that system is operated the ADMIN_RESV state overlays
the down events. That is, when nodes fail they are placed into

TABLE III
TIME BETWEEN DOWN AND CONNECTION_LOSS ON THE FOUR CLUSTERS

STUDIED AT LANL.

Cluster Name
Time Between (hours)

DOWN CONNECTION_LOSS
mean median mean median

Grizzly 18.92 5.75 25.80 5.13
Wolf NA NA 38.53 3.23
Snow 33.98 5.23 66.50 19.80

Woodchuck 121.34 55.73 344.29 16.41

an admin reservation queue where system support diagnoses
the problem before returning the node to service.

Woodchuck is a small system which is dedicated to data
analytics jobs. The outliers shown in the figures are reasonable
given the system sizes and we see that as the systems grow
in size, the time between events become shorter.
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Fig. 11. The mean (triangle) and median (line) between DOWN events for
the Woodchuck, Snow, and Grizzly clusters. Wolf has no down events due to
the ADMIN_RESV overlay effectively “shadowing” these events as nodes are
placed into a special administrative state for error diagnosis.
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Fig. 12. The mean (triangle) and median (line) between CONNECTION_LOSS
events for the Wolf, Woodchuck, Snow, and Grizzly clusters. Slurm appears
to lose connectivity with the Grizzly nodes about as frequently as nodes go
down. These are distinct and separate states.

E. Correlated Failures

Studies [9] have shown that node failures dominate su-
percomputer failures in production. While sometimes nodes
fail at the same time, or “close” in time (for some fuzzy
definition of closeness), these events are thankfully more rare.
We consider that these require some sort of shared resources
such as network, power backplane, or potentially (in extremely
rare circumstances) all running the same job, and call this class
of events correlated failures.

With SaNSA we can easily look for these events due
to the structured nature of the node state data. One event
SaNSA found was an instance of an entire rack, number 37

in scalable unit (SU) 8, that went down at the same instant.
The 47 nodes in the rack were offline for 6 hours before
coming back into operation. Assuming this was some sort of
administrative action, we looked through the system logs by
hand on these 47 nodes and spoke to the admins and saw no
record of this. We do note that the nodes are DOWN and not
CONNECTION_LOSS. This indicates that it was not a loss of
connectivity to Slurm through some sort of shared networking
resource in the rack. We confirmed this in the logs as well.
More advanced telemetry such as those present on LANL’s
Trinity supercomputer in the secure, where SaNSA will be
deployed in the coming months, would likely have helped in
root cause analysis.

Another event SaNSA discovered was one where 3 racks
crashed at the same time. Interestingly, while two of the
racks were next to each other (20 and 21 in SU5), the third
rack involved was rack 17 in SU4. The way these racks are
oriented we are not aware of any shared power resources that
could cause this event. Not surprisingly, jobs were running
on Grizzly at this time which were impacted by a failure
of 18% of the cluster’s nodes. In this case, an 80 node job
and a 192 node job were killed which stretched across many
more nodes of Grizzly. What we then see is an event where
(presumably) hardware node failures due to some shared
resource impact job failures causing jobs to abort on nodes that
remain healthy because the underlying parallel runtime library
is not resilient. This would be a case of failure cascading and
causing increased harm.

IV. RELATED WORKS

Stearley [10] developed a method for evaluating Cray su-
percomputers using node states. Much like our work, these
events were based on specific messages in log files. However,
it was specific to Cray supercomputers only at the time, though
it is likely it could be extended. They call out the need for
administrators to mark scheduled downtime events which is
something we address in SaNSA with reservation overlays.
While similar on some levels, this related work did not use
the state machine that was built to detect problems and lead
to solutions.

In [11], a study of supercomputer logs is performed which
can be used to categorize log messages into a number of cate-
gories. Anomaly detection of log messages for supercomputers
is of interest to the HPC community [12]–[14]. However,
existing approaches mostly focus on looking for anomalies in
log files themselves rather than our approach with SaNSA of
detecting anomalies via the state of the nodes. While these
efforts have similar end goals, we believe our approach is
unique and allows for different discoveries.

Schroeder [15] studied failures on almost two dozen high-
performance computing systems. They present work on root
cause analysis, time between failures, and repair times. Their
studies use job workload data and failure event logs. We
present here with SaNSA a tool that could easily be used
to conduct such a study and have shown similar applications.



With SaNSA, node state can be assembled through a config-
urable number of data sources instead of just already processed
event logs. The events are determined based on specifications
of patterns.

In [9] and [8] the Blue Waters and Titan supercomputers are
studied respectively. Both analyses focus on failure events and
look to do root cause analysis. In [9] link (network) failures
are discussed as well as failures that do not cause job loss.
This is likely comparable to the CONNECTION_LOSS states
which are identified in our work with SaNSA.

Production HPC data centers use different tools for monitor-
ing including LDMS [4] for node metrics, RabbitMQ [16] for
log message transport, Splunk [17] or Zenoss [18] for log col-
lection and displays, and Baler [19] for analysis. With SaNSA,
we consume many of the data sources which are provided by
such a monitoring infrastructure. Unlike approaches like Baler,
our focus is on the state of the nodes and clusters over time
rather than on detecting anomalies in the raw data used as
input.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed SaNSA, a software archi-
tecture for studying supercomputer and node state over time.
The states that SaNSA can capture are defined by the user
and can be assigned priorities depending on the perspective
the analyst is interested in studying.

We used SaNSA to ingest over 1.1 billion system log lines
from 4 production clusters at LANL over 190 days in 2018.
These systems are relatively small as most of LANL’s produc-
tion computing resources are in the secure. The Elasticsearch
infrastructure used by SaNSA has only recently been fully
deployed in this environment and data collection is ongoing.
We intend to use SaNSA on LANL’s large production CTS
systems as well as the Trinity supercomputer (nearly 20,000
nodes) which will provide for both larger data sources as well
as larger production resources to analyze.

We have shown that SaNSA can be used to establish
node state transition probabilities which may be useful for
characterizing a representative node of a cluster. Next, we are
looking at both continuous and discrete time Markov chains
for use with SaNSA and how they might be applicable for
further analysis.

It is our hope that through better understanding of node
and supercomputer state over time, not just through real time
health monitoring, we will gain an improved understanding of
supercomputer reliability and where additional emphasis needs
to be placed. In future work we will look at how user views
of node state differ from syslog views and how this impacts
overall metrics such as utilization.
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